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Figure 1: The Chair Prototype

ABSTRACT

This research paper explores the use of 3D-printing technolo-
gies in prototyping of Topology Optimization (TO) driven
design. The paper describes the integration of TO into an
early design work-flow and highlights the difficulties thereof.
Due to the high computation times of TO, we outline the use
of statistical learning to approximate TO material density re-
sults. Specifically, we highlight the use of such techniques
for TO of thin-shell, minimal surface chair geometries and
the incorporation of specific assumptions related to such ge-
ometries to improve the functional approximation using sta-
tistical methods. We describe the various stages of the design
pipeline that benefit from interactive TO.
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1 INTRODUCTION

3D-printing, a layer-by-layer additive manufacturing tech-
nique [?] is typically used to deliver geometrically precise,
functional prototypes in a short period of time. It has emerged
as one of the key rapid prototyping technologies in the field of
product design [?] and in large scale architectural design [?,
?]. Large 3D-printing companies such as Stratasys [?] most
commonly use thermoplastics - ABS (Acrylonitrile-Butadiene
Styrene) / PLA (PolyLactic Acid) - as a material. There have
been several recent attempts to investigate alternate material-
izations like clay & concrete [?], resin & metal [?], glass [?]
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etc. This along with the development in higher precisions
and larger build volumes [?] makes 3D-printing conducive
to realize customized designs. Topology Optimization (TO),
a field of structural mechanics [?] has found increased ap-
plication in architectural design in recent times [?, 2, ?]. Its
use in architectural design is characterized by the outcome
of the simulation being dominantly and visually expressed in
the final design. Due to the complexity and intricacy of the
results, TO is often constrained to research studies [?]. 3D
printing has been used increasingly to materialize TO driven
designs [?, 2, ?].

TO faces similar challenges of computational time as other
Finite Element Method based simulations, making it un-
suitable for interactive edit-and-observe design methods pre-
ferred by designers. Statistical learning techniques have been
previously applied to alleviate similar problems in Compu-
tational Fluid Dynamics [?]. Additionally, there are several
examples of using domain specific information to improve
the accuracy of the approximation [?]. The use of statistical
learning to approximate TO results along with successful re-
alization of TO driven design prototypes with 3D-printing are
the primary contributions of this paper.

2 PAPER ORGANIZATION

The paper is prompted by the experiences of using TO for
the design and manufacture of a chair (Figure 1) using high-
resolution 3D-printing technologies. Section ?? outlines the
various stages of the design work-flow that incorporates and
highlights the benefits of using procedural modeling of de-
sign geometry, TO for structural evaluation and material sav-
ing results, re-meshing to produce a structurally aligned ge-
ometry and preparation of the geometry for production. In
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Section ??, we discuss the motivation for using statistical
learning to approximate TO results and explain the variables,
methods and prediction results. We comment on the exten-
sion of the work in both the 3D-printing and statistical learn-
ing domain in Section 2?.

3 DESIGN WORK-FLOW
The design work-flow consists of five steps, each of which is
described in subsequent subsections.

1. Procedural modeling of design geometry
2. Topology Optimization

3. Re-meshing

4. Parametric design detailing

5.

Generating production information

3.1 Procedural Modeling of Design Geometry

Initially, using the process of hierarchical subdivision surface
modeling [?], a low-poly mesh (M) (Figure ??A) is defined.
A manifold M that is predominantly represented by a quad-
faced mesh lends itself to ease of manipulation of the design
geometry and hence helps in creating multiple and quick de-
sign iterations. The desired M is then subdivided using the
modified Catmull-Clark subdivision scheme inbuilt into Au-
todesk Maya [?] to create a high-resolution mesh (HR-M)
(Figure ??B). This improves results from the next step of TO.
An iterative perturbation scheme — the so-called dynamic re-
laxation method [?] is applied to HR-M in order to get an
even distribution of quads(Figure ??C).

3.2 Topology Optimization

TO is usually addressed under the heads of size, shape and
topology [?]. Each of these have been well researched and
documented. For comprehensive understanding on shape
optimization, we refer the reader to [?], [?], [?] and to [?], [?]
for size optimization.

In this paper we refer to TO by the homogeneous method
defined as a distribution problem of isotropic material which
addresses all three aspects of size, shape and topology si-
multaneously [?]. Given a set of design constraints, support
conditions, applied loads, thickness/volume of material, TO
is used to find the optimal layout of a material densities
within a specified region [?]. We have used the Optistruct [?]
and its proprietary optimization algorithm inbuilt in Altair
Hypermesh to run the TO simulations.

The process of TO begins by defining the design and
non-design area. The non-design areas are frozen from the
optimization. For the chair, all of the boundary faces of
HR-M are defined as non-design area and the rest of the faces
as design area. All the base boundary vertices of HR-M are
defined as the support condition which are called as Single
Point Constraints (SPC). The loads were applied considering
an 80 kg human seated on the chair and were classified
as load on seat (S), back-rest (BR) and hand-rest (HR)
(Figure ??C). The mechanical properties of the material
used correspond to the specifications provided by Stratasys -
RGD Polyjet Plastic [?]. The maximum thickness constraint
imposed on the optimization of the chair was 3cm.
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Figure 3. Parametric Design Detailing

3.3 Re-meshing

After the TO simulation , the material distribution map
(multi-color gradient) (Figure ??D) showing material den-
sity per vertex of HRM is converted into a single color gradi-
ent (Figure ??E). The density value per vertex varies in the
domain of O (potential void) to 1 (structural member) [?].
We do a Re-meshing of HR-M since the mesh-edges of HR-
M do not align with the gradient of the TO material den-
sity map. A skeletal Realigned Mesh (RM) is created us-
ing the high material density area of HR-M (Figure ??F-G).
Next, the holes of RM (Figure ??H) are filled and converted
into a high-resolution Realigned mesh (HR-RM) (Figure ??1).
The single-color gradient density values of HR-M are then
mapped back onto HR-RM (Figure ??2J).

3.4 Parametric design detailing

Subsequently, a bespoke algorithm utilizes the material-
density information on HR-RM, to create another mesh with
varying thickness and perforation (DM) (Figure ??). For the
chair, the thickness varies from 3 cm to 1 cm for correspond-
ing vertex density value of 1 and O respectively. The perfora-
tion were created per face (density value per face computed
as average density of all the vertices attached to that face) and
the size of the perforation was a percentage of the area of the
face. This percentage varied from 0 to 75% for corresponding
face density value of 1 and O respectively. Since the Stratasys
printer could do multi-colored print, the same data of vertex
density value are used to create a blend between two user in-
put colors (Figure 2?). This process of varying the thickness
results in a material saving of 40% in comparison to a geom-
etry of uniform thickness of 3cm. This saving increases to
55%, when thickness and perforation sizes are varied simul-
taneously.

3.5 Production

The information needed by the 3D-printer was extracted to
suit the prevalent industry standard of partitioning design ge-
ometry into shells / solids of constant material properties [?].
The number of shells is a function of the number of colors
used in the design of the chair (Figure ??) - single-color
gradient chair (10 shells), multi-color gradient chair (20
shells), single-color chair (1 shell).

4 APPROXIMATING RESULTS OF TO
TO, as noted in the Section 1, is expensive in terms of compu-
tational time. Since the time required to achieve these accu-
rate results is greater than that available in a design work-flow
it becomes difficult to integrate TO at the early stage of the
design work flow [?]. As such, quick qualitative results that
provide interactive feedback to the designer are just as im-
portant as the accurate, material-saving results. In order to
overcome this difficult , we looked at statistical learning al-
gorithms to approximate TO results with domain specific data
such as principal curvatures, vertex normals etc which aread-
ditionall intrinsic properties of the design geometry. Here,
we briefly outline our thinking behind the heuristic that was
used as part of the statistical learning method. Let us briefly
assume the surface to be funicular. Then, it is a commonly
used approximation to apply the equation describing a de-
flected membrane stretched by a transverse load ([?, Equation
9.16]). By funicularity, the membrane under pure tension gets
inverted “upside down” to a pure compression shell. Thus,
we view the surface as a solution of Az = —w where z is the
height function of the two variables x, y that parametrise the
projection onto the x — y plane, and w denotes the applied
load. Furthermore, it is well known that the structural proper-
ties of a surface can be expressed in terms of the Airy stress
function ¢ such that
0%¢ 022 0% 0%z 0%¢ 0%z
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([?, 3.2.1]) with a function ¢ of x and y. Taking these
equations together, one can see that the Airy potential of
an equilibrium, compression-only surface can approximately
assumed to be the paraboloid ¢(z,y) = (22 + 32)/2 be-
cause its Hessian matrix is the unit matrix. Then, (??) sim-
plifies to Az = —w. Let us from now on abbreviate the
partial derivatives with a subscript. There is the relationship
S = (yv/detg)g~'o ([?] and the corrected version [?]) be-
2
_¢(§;y (;izy), the metric g = (121_2 fizz% ), and
the stress tensor o. For the particular case where the Airy
stress potential is given by paraboloid, the matrix .S reduces
to the unit matrix. We obtain an approximate explicit formula

o= (y/detg)~'gor
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expressing the stress tensor in purely local geometric terms.
To illustrate this thought by an example, let us suppose, for in-
stance, that the structure is a linear protrusion along the y-axis
of a shape that varies only along the x-axis, and the surface

is subjected to self-load so that w = /1 + 22 + 22. Then,

zy = 0, and (??) means that the compression in a catenary
arch satisfies o = (°>*h(*) 0 in accordance with well-known

o =

Figure 4. Production Information for 3D-Printing



theory on catenaries and funicular arches [?].

One can prove that the “true” stress tensor o seen as a linear
self-maps of the tangent vector space to the structure at any
interior point and o are related by the intertwining relation
o = dz o (dz)~! where dz is the differential of z as a func-
tion of x and y. Thus, the eigenvalues of o and o agree.
Taking these thoughts together, the principal stresses of a
compressive structure in equilibrium are approximately the
eigenvalues of (??), which are quickly calculated and given

by My = /1+22+ z§ Ao = (A1)~!. Thus, the principal
stresses and their directions are given in terms of the local
geometry, bypassing the need to compute them with a finite

element analysis. The quantities A1, Ao are easily obtained

from knowledge of the surface normal n. In fact, since
n=((V2)",D)"/II(V2)", 1) 4
=((V2)T, )T/ /14 22+ 22

we get A by the z-component of the surface normal, and A\
by its inverse. Since the vertex normal’s z-coordinate is less
than its inverse, we view it as a heuristic approximation to the
principal stress Ag, and its inverse as one to A;. We expect
the result of the topology optimization to be tightly linked to
the magnitudes of the principal stresses, and therefore include
the quantities (??) into the predictive model even though the
chair’s structure is not free of bending moment, and is there-
fore not in compression-only equilibrium.

4.1 Geometric Features for Statistical Learning

We were guided by searching for a possible correlation be-
tween the TO material density result and geometric features,
as listed below.

1. Locally computable geometric features:

e the principal curvatures k1, ko as the most important
local geometric features

e the z-component of the surface’s normal vector as
well as its inverse, as motivated by the line of thoughts
explained in Section ??

e the angles between the vertex normal and the direction
of the applied load, for each of the applied loads (see
Figure 2?)
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Figure 5. Calculating the Shortest Mesh Distance and Angle to Load

2. Simple globally computable features that are intuitively ex-
pected to have an impact on structure

e the shortest mesh distance to constraint (see Fig-
ure ??)

e the shortest mesh distances to the closest load point,
for each of the applied loads (see Figure ??)

In total, our first model was one with nine linear features.
In other words, the prediction was based on a linear predictor
which is a linear combination of these nine features and a con-
stant term called intercept. Moreover, we fitted a quadratic
model, adding all possible quadratic terms to these , i.e., all
two-fold products of any two features out of these, with the
only exception being the product between the z-component
and its inverse because it is equal to one and would therefore
not add predictive value. Likewise, a cubic model incorpo-
rated all possible one-fold, two-fold and three-fold products
of variables out of these nine variables.

For instance, the linear model featured linear combinations
of the principal curvatures x; and k9, and therefore made the
mean curvature, the sum of x; and ko, available as a predic-
tive feature. The quadratic model, in turn, also incorporated
the Gaussian curvature, the product of these two.

In total, there were 130 — 8 = 122 predictors in the cubic
model, including the intercept. Since the TO density results,
obtained using the same TO setup explaind in Subsection ??,
were distributed on the unit interval [0, 1] and therefore not
normally distributed, linear regression had to be discarded.
Instead, the density result had to be “binned” or “grouped”.
We applied a grouping threshold of 0.32, the median of the
learning data’s densities in such a way that both bins had the
same size. For a refined analysis, the high density values were
further subdivided into two groups of the same size, yield-
ing three groups with the thresholds 0.32 and 0.63. Thus,
there was a binary prediction target {low, high} and a three-
class prediction target {low, middle, high}. For the former,
we chose logistic regression, and for the latter ordinal logis-
tic regression. We refer the reader to the vast statistical lit-
erature for introductions to these classical concepts, see for
instance [?] as well as [?] and the references therein. For
logistic regression, the prediction goal is binary, namely to
discern between high and low topology-optimized values of
the density D. In logistic regression, the prediction is based
on the value of the linear predictor

Prob(D = IOW) = 1/(1+€‘Xp(—(50 —+ ,81X1 + ﬂQXQ —+ ... ))),

(4)
where each X is a product of one, two or three features out of
those described in Subsection ??, (3 is the intercept, and the
B; are the coefficients which are being fitted by the learning.
For multi-class prediction, we used an ordinal cumulative
probability model ([?]). In it, one models the ordered stages
of the discretized prediction target D €{low, middle, high}
by means of the expression

eXp(ﬂo — (,@%Xl + 52X2 —+ ... ))
14+ exp(Bo — (81 X1+ B Xo +...))

Prob(D < y) =
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where y €{low, middle, high}. Note that only the intercepts
are assumed to depend on y. The coefficients j3; are to be es-
timated.

In order to prevent over-fitting, we strictly separated learning
and testing geometries: models were either used for train-
ing or for testing, but not for both. Specifically, the geome-
try groups of Figure ??A were used for learning the models,
which were subsequently evaluated on the geometry groups
of Figure ??BCD.

4.2 Prediction Results

The prediction improved, as anticipated, when passing from
the linear over the quadratic to the cubic model (Figure ??).
The evaluation of the model was done on the final chair’s ge-
ometry.

Figure ?? contains predictions of the best model, the cubic
model, on alternative geometry. Mostly, the geometric shape
of the area formed by vertices with high density was accu-
rately mapped. The model performed better in areas with
highly variable geometry, such as the armrests, the backrest,
and the legs, whereas in flat regions such as the seat, the pre-
diction was weaker. The best prediction accuracy of up to
84% (i.e., the proportion of correctly classified vertices) was
reached on the groups of Figure ??BC which had only minor
geometric deviations from training geometries of Figure ??A.
However, the geometries with larger geometric deviations of
Figure ??D had an accuracy of only 68% to 75%. Predic-
tion with a logistic regression model with linear but without
quadratic and cubic terms resulted in the coefficients given in
Table 1 containing the coefficients 3; as defined in (??) in the

Estimate  two-sided p-value
(Intercept) -1.59
K1 -0.02 < 10~40
K2 0.02 <10~14
shortest mesh distance to constraint(SPC) -0.66 < 10~10
vertex normal z -2.60 <1032
shortest mesh distance to load S 0.28 <102
angle to load S 0.03 < 10720
shortest mesh distance to load BR 0.26 <103
angle to load HR -0.003 <1076
(vertex normal z) ! 0.01 <108

Table 1. Estimated coefficients of the linear logistic model

first column. The second column indicates the p value, whose
meaning is roughly described as the probability of observing
such a high value of the corresponding coefficient by chance
if the true coefficient was zero, i.e., if the corresponding vari-
able had no real influence on the prediction target.

Table 1 contains a few remarkable results. The magnitudes of
the influences of k1 and ko are the same but their signs are
opposed to each other, implying that their difference has pre-
dictive value rather than their sum, the mean curvature. The
influence of the shortest distance to the constraint is negative,
implying that the density increases close to the constraint, as
expected. The distances to the loads, however, have positive
influence. The vertex normal’s z-coordinate, the heuristic ap-
proximation to the second principal stress Ao has negative in-
fluence, its inverse has positive influence. All features are
highly statistically significant (p-values < 0.05). The most
powerful model, the cubic one, however, is harder to interpret
since in it, each variable occurs often, in different products.

5 FUTURE WORKS

The objective of using TO in the early design work-flow, pro-
duction of geometry for multi-color 3D-printing and finding
correlation between geometric features and TO density re-
sults using statistical learning were successful. However is-
sues raised and results obtained during these processes have
scope for development under the domains explained below.

Automation of Re-meshing

The process of re-meshing (Subsection ??) is currently done
manually. We propose to develop on research of skeletal ex-
traction [?] to automate the process of extraction of skeletal
mesh based on the TO results.

3D-Printing

The current production process prohibits the usage of smooth
gradients, due to the limited number of colors available in
the material color catalog [?]. The constraints of the printer
provided by Stratasys also governed the use of constant ma-
terial properties for the production shells in the 3D-printed
prototypes. We propose to build on research of voxel based/
data driven material [?] as a transfer of production informa-
tion with the printer in order to create smooth gradients in
color and multi-material prints. Our design work flow incor-
porating TO is easily amenable to generate data on material
property variation based on structural results.

Statistical learning of structural properties

The current prediction performs reasonably well as long as
the learning and the predicting geometries remain within a
given series of related geometries. It would be worthwhile to
study ways of expanding the prediction radius to more distant
or distorted geometries than those the model was learned on.
In that vein, we envisage to add further co-variables to those
enumerated in Subsection ?? in order to improve the predic-
tion. To be more precise, let us recall that the coefficients
of the higher order terms indicate the best-fit description of
the surface in terms of the graph of polynomials of higher
degree [?]. These coefficients provide good candidates for
further locally computable geometric features that are empir-
ically correlated with structural features.

Another venue for future work is the challenge to predict the
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Figure 8. 3D-Printed Chair Prototypes

principal stress directions. In a first step, it is possible to de- rive an immediate good guess of the principal stress direc-



tions on funicular surfaces, along the lines developed in Sec-
tion ??. The approximation might be improved by finding
better ways of local guesses of the Airy function associated
with the geometry and the loading conditions, thereby imply-
ing the stress tensor field.

6 CONCLUSION

We have documented a TO-driven design process, and gener-
ated production information for a multi-color 3D-Print (Fig-
ure ??). In addition, we have described a novel method

of approximating TO results using statistical learning, which
opens up further avenues for research. These are the key con-
tributions of this paper.
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